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Bounds for Reactivity Indices

Ivan Gutman*

Institut fiir Quantenchemie, Freie Universitét Berlin,
Holbeinstr. 48, D-1000 Berlin, Federal Republic of Germany

Lower and upper bounds are derived for bond number, localization energy and
atom self-polarizability of alternant hydrocarbons. It is proved that in acyclic
polyenes the maximal bond number is 1, ﬁ and /3, respectively for primary,
secondary and tertiary carbon atoms.
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1. Introduction

In the molecular orbital theory of organic molecules [1], several reactivity indices
have been defined which are expected to parallel the chemical behaviour of con-
jugated compounds. Bond number N,, free valence F,, localization energy L, and
atom self-polarizability x,, are the important reactivity indices for a particular site
of an alternant hydrocarbon. They are defined as

Nr:Zprs
FszmaX_Nr
L=FE-E,
o
=3 do?

In the above formulas, p, is the bond order between the atoms r and s and the sum-
mation goes over all atoms s adjacent to r; N, is the maximal possible bond
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number; E and E, are the total  electron energy of the molecule and of its corre-
sponding ¢ complex; a, is the Coulomb integral at site r [1]. In spite of the ap-
parently dissimilar form of these equations, they give strongly correlated numerical
results, especially when applied to alternant systems [2, 3]. These indices have also
a similar functional dependence on molecular topology, which can be immediately
seen by comparison of the integral expressions (2-4).

In the present paper we shall use standard graph-theoretical terminology [4]. Thus
a conjugated hydrocarbon is represented by its molecular graph G. Let the number
of vertices in G be 2n. (The assumption that G has even number of vertices will not
affect the general validity of our results.) The subgraph obtained by deletion of the
vertex r from G is denoted by G-r. Hence, G-r has 2n—1 vertices. Of course, G-r is
the graph-theoretical description of the ¢ complex with the sp® carbon atom at
position r {5].

Let P(G, x) be the characteristic polynomial of G and x, >x,2 - - - 2 X,, its roots.
The x;’s are called the eigenvalues of the graph G [4]. The eigenvalues of the sub-
graph G-r will be denoted by y, 2y, > --- 2y,,-1-

If the molecule is alternant, the corresponding molecular graph is bipartite. Accord-
ing to the pairing theorem [6], the bipartite graphs have the property that for all
j=1ton,
X;+Xgy 1 - j =V +Yau- ;=0 4y
Therefore it is x,>0>x,,, and y,_;2,=0=y,, .
In the present paper only alternant hydrocarbons will be considered.
We introduce now an important topological function V as [7]
V=V(x)=i-P(G-r, ix)/P(G, ix)

with i=./—1. As a consequence of Eq. (1), if G is bipartite, then V' is real for all
real values of the variable x. Moreover, it is V(—x)= — V(x). Further elementary
properties of the function ¥ can be found in [7].

In terms of the function ¥ the reactivity indices N,, L, and =,, can be expressed as
follows.

N=—xV> @
L,=—(log xV) 3
7= (V2 @

where we have used the abbreviate notation

lr FCo) de= Ry =(F

-
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2. Bounds for N,, L, and &,

The integral formulas (2), (3) and (4) were first given by Coulson in [8], [9] and
[10], respectively. They will be the starting point for estimating the reactivity
indices. In order to do this, we shall need certain inequalities for the function V.

First Inequality for V

Let x, and x,, be the largest and the smallest non-negative eigenvalue of a bipartite
graph G. Then for x>0,

x/(x? +x7) S V() <x/(x* +x7) )
Proof. According to the pairing theorem (1), V(x) of a bipartite graph can be
transformed into

_ Py y)) (P R y)
D3 +xD) L (PR )P+ xD)

V(x) (6)

Now, the Cauchy inequalities [11, 12] relate the eigenvalues of a graph G and its
subgraph G-r as
Xy ZP 12X ZYy 2 2 Xy 2 Y1 Z X >
Therefore, for j=1ton—1,
P +yH/(x*+x)<], P +yDI(x*+x3, ) =1
which substituted back into (6) gives the inequalities (5) straightforwardly.
Inequalities (5) can be simply transformed into
X432 <1 —xV<x2(x*+x2) @
Since all the three expressions in (7) are even functions, (7) holds for all x. Therefore,
2+ x2) =3V Y < (x4 x2))

Theleft and the right integral can be evaluated by elementary methods. Thus a lower
and an upper bound for bond number results. Analogous considerations yield
bounds also for localization energy and atom self-polarizability. We summarize
these results in the following theorem.

Theorem [

Let x, and x, be the largest and the smallest non-negative eigenvalue of the molecu-
lar graph G of an alternant hydrocarbon. Then for any site r of this molecule, the
reactivity indices N,, L, and «,, are bounded as follows.

anNrsxl
2x, <L, <2x,

(2x)"'<m, <(2x,)7!
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3. On the Problem of NV,

For the evaluation of free valence index, a maximal possible value, N, for the
bond number is required. In textbooks of quantum organic chemistry it is usually
assumed to be a firmly established fact that

Ninax = \/gr 8

with d, being the number of carbon atoms adjacent to the carbon atom r. As to the
author’s knowledge, this has not been proved anywhere in the literature'. We offer
now a proof of Eq. (8) valid, however, for acyclic conjugated systems only.
Similar statements will be also obtained for localization energy and atom self-
polarizability.

Second inequality for V
Let G be an acyclic graph. Then for x =0,
Vex/(x*+d,) ®

where d, is the degree of the vertex r (i.e. the number of its first neighbours). The
equality in (9) holds for stars, and only for them?.

Proof. First we note that if G is acyclic, its characteristic polynomial can be written
as [15, 16],
n

P(G, x)= . (- 1)JP(G’j)x2(n—j)

j=0
where p(G, j) is the number of ways in which j non-incident edges can be selected
in G. Therefore, V(x) is of the form

Y p(G-r, jyx?0 0
—d
V=506, e

J

(10)

The quantities p(G, j) fulfil the recurrence relation [15, 16]
p(G’])zp(G-ers’ ]) +p(G-F-S,]— 1) (11)

where e, is the edge between the vertices r and 5. A repeated application of Eq. (11)
gives

PG, =p(G-1, )+ ¥, p(G-r-s5,j—1) (12)

! Eq. (8) seems to be first suggested by Moffiti [13], but without proof. Mofiitt has only demon-
strated how N, can be determined within the valence bond approximation. Coulson’s footnote in [8]
about an alleged proof of (8) seems to refer to Moffitt’s paper [13]. According to [14], in a private
communication Coulson claimed in 1963 to be able to deduce (8) using a contour integral formalism for
bond orders. This unpublished result is likely to be lost.

2 For the definition of a star graph see Ref. [15]. Note that the stars with 2, 3, and 4 vertices are
the molecular graphs of ethylene, allyl and trimethylene-methane, respectively.
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with the summation going over all the vertices s adjacent to r. Note that there are
Just d, such vertices.
It is easily seen that

p(G-r—s,j— 1)$p(G—r,]—1) (13)

since G-r-s is a subgraph of G-r. Moreover, an equality in (13) is obtained only if
the vertex s is of degree one. Substitution of (13) back into (12) gives

PG, )< p(G-r, ) +d, p(G-r,j—1) (14)

From (14) one can further conclude that

Y p(G, Nx*"PL Y p(G-r, x> 4d, Y p(G-r, j—1)x>"
j F .
T (A
j

Combination of this latter relation with Eq. (10) gives the inequality (9).

An equality in (14), and therefore also in (9), exists only if all the vertices s adjacent
to r have degree one. This, on the other hand, is possible if, and only if G is a star
and r is its central vertex.

Theorem 2

Let d, be the number of carbon atoms adjacent to the carbon atom r of an acyclic
polyene. Then d, determines an upper bound for N, and L, and a lower bound for
,, as follows.

N,<\/d, (15a)
L,<2./d, (15b)
n,, > (2\/671')_ ! (1 SC)

Proof'is based on a combination of the inequality (9) with Egs. (2-4) and is com-
pletely analogous to that of Theorem 1.

Corollary 2.1. The equality in the relations (15) holds only for ethylene (d, = 1) and
the central atoms in allyl (d,=2) and trimethylenemethane (d,=3).

Corollary 2.2. In acyclic polyenes Nmaxz\/;l,. Moreover, there exist also a
maximal possible localization energy Lmax=2\/:i, and a minimal possible atom
self-polarizability 7, ;,=(2./d,) " ".

It is likely that the inequalities (15) hold generally. A careful analysis of the proof
to Theorem 2 shows, however, that its present form can not be extended to all
bipartite graphs. Similarly, the proof of Theorem 1 is essentially based on the
pairing theorem and it is not simple to extend it to non-alternant hydrocarbons.

min
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