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Lower and upper bounds are derived for bond number, localization energy and 
atom self-polarizability of alternant hydrocarbons. It is proved that in acyclic 
polyenes the maximal bond number is 1, x/2 and x/-3, respectively for primary, 
secondary and tertiary carbon atoms. 
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1. Introduction 

In the molecular orbital theory of organic molecules [ 1], several reactivity indices 
have been defined which are expected to parallel the chemical behaviour of con- 
jugated compounds. Bond number Nr, free valence F,, localization energy Lr and 
atom self-polarizability rc~ are the important reactivity indices for a particular site 
of an alternant hydrocarbon. They are defined as 

N,=y~p~s 
S 

s 

1 ?2E 

~r= 2 &2 

In the above formulas, p,~ is the bond order between the atoms r and s and the sum- 
mation goes over all atoms s adjacent to r; Nma x is the maximal possible bond 
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number; E and E, are the total rc electron energy of the molecule and of its corre- 
sponding a complex; ~, is the Coulomb integral at site r [1]. In spite of the ap- 
parently dissimilar form of these equations, they give strongly correlated numerical 
results, especially when applied to alternant systems [2, 3]. These indices have also 
a similar functional dependence on molecular topology, which can be immediately 
seen by comparison of the integral expressions (2-4). 

In the present paper we shall use standard graph-theoretical terminology [4]. Thus 
a conjugated hydrocarbon is represented by its molecular graph G. Let the number 
of vertices in G be 2n. (The assumption that G has even number of vertices will not 
affect the general validity of our results.) The subgraph obtained by deletion of the 
vertex r from G is denoted by G-r. Hence, G-r has 2 n -  1 vertices. Of course, G-r is 
the graph-theoretical description of the a complex with the sp 3 carbon atom at 
position r [5]. 

Let P(G, x) be the characteristic polynomial of G and x 1 ~> x 2 >f �9 �9 �9 >/x2, its roots. 
The xi's are called the eigenvalues of the graph G [4]. The eigenvalues of the sub- 
graph G-r will be denoted by Y l >/ Y 2  >/"  " " >/ Y2n- 1" 

If the molecule is alternant, the corresponding molecular graph is bipartite. Accord- 
ing to the pairing theorem [6], the bipartite graphs have the property that for all 
j = l  ton,  

xj +x2, + 1-j=Yj +Y2,-j =0  (1) 

Therefore it is x, ~>0>~x,+ 1 and y,_ 1 >~Y, =0>~y.+ 1. 

In the present paper only alternant hydrocarbons will be considered. 

We introduce now an important topological function V as [7] 

V= V(x) = i. P(G-r, ix)/P(G, ix) 

with i=,f-L-1. As a consequence of Eq. (1), if G is bipartite, then V is real for all 
real values of the variable x. Moreover, it is V( -  x)-- - V(x). Further elementary 
properties of the function V can be found in [7]. 

In terms of the function V the reactivity indices Nr, Lr and rc~, can be expressed as 
follows. 

N,=(1-xV> (2) 

Lr= -- (log xV> (3) 

rc,~ = ( 1/2 ) (4) 

where we have used the abbreviate notation 
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2. Bounds for N r ,  L~ and ~z,r 

The integral formulas (2), (3) and (4) were first given by Coulson in [8], [9] and 
[10], respectively. They will be the starting point for estimating the reactivity 
indices. In order to do this, we shall need certain inequalities for the function V. 

First Inequality for  V 

Let x 1 and x, be the largest and the smallest non-negative eigenvalue of a bipartite 
graph G. Then for x >~ 0, 

x/(x 2 + x~) <. v(x) <~ x/(x 2 + x~.) (s) 

Proof. According to the pairing theorem (1), V(x) of a bipartite graph can be 
transformed into 

. .  -k  2 x(xZ+YZ)(xZ+Y 2) " (  X2 Y n - 1 )  

V(x) = (x 2 +xZl)(x 2 + x2 ) . . .  2 2 ~ 2 (6) (x + x . _ l ) ( x  +x . )  

Now, the Cauchy inequalities [11, 12] relate the eigenvalues of a graph G and its 
subgraph G-r as 

x l >~ Y a >~ x 2 >/ Y 2 >/  " " " >/  X n - 1  >/ Y n - 1  >/ X n >/ " " " 

Therefore, for j =  1 to n -  1, 

2 2 2 2 2 2 2 (x + y j ) / ( x  +xj)~<l, ( x Z + y j ) / ( x  +xj+l)>~l 

which substituted back into (6) gives the inequalities (5) straightforwardly. 

Inequalities (5) can be simply transformed into 

xZ / (x  2 + xZ,) <~ 1 - x V <<. xZ / (x  z + x 2) (7) 

Since all the three expressions in (7) are even functions, (7) holds for all x. Therefore, 

( x~/(x  z + x2)  ) <<. (1 - ) ;  V> <<. (x]/(x 2 + x]  ) > 

The left and the right integral can be evaluated by elementary methods. Thus a lower 
and an upper bound for bond number results. Analogous considerations yield 
bounds also for localization energy and atom self-polarizability. We summarize 
these results in the following theorem. 

Theorem 1 

Let x l and x, be the largest and the smallest non-negative eigenvalue of the molecu- 
lar graph G of an alternant hydrocarbon. Then for any site r of this molecule, the 
reactivity indices Nr, L, and ~rr are bounded as follows. 

x,<~Nr<~x 1 

2x,<~ Lr<~ 2x 1 

(2x0-1 ~< ~rr~ < (2X,)- 1 
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3. On the Problem of  Nma x 

For the evaluation of flee valence index, a maximal possible value, Nma x, for the 
bond number is required. In textbooks of quantum organic chemistry it is usually 
assumed to be a firmly established fact that 

N m a x =  ~ (8) 

with d r being the number of carbon atoms adjacent to the carbon atom r. As to the 
author's knowledge, this has not been proved anywhere in the literature 1. We offer 
now a proof of Eq. (8) valid, however, for acyclic conjugated systems only. 
Similar statements will be also obtained for localization energy and atom self- 
polarizability. 

Second inequality for V 

Let G be an acyclic graph. Then for x ~> 0, 

v>~ x/(x 2 + dr) (9) 

where d r is the degree of the vertex r (i.e. the number of its first neighbours). The 
equality in (9) holds for stars, and only for them 2. 

Proof. First we note that if G is acyclic, its characteristic polynomial can be written 
as [15, 16], 

P(G, x)= ~ ( -  1)Jp(G,j)x z("-~) 
j = o  

where p(G, j) is the number of ways in whichj non-incident edges can be selected 
in G. Therefore, V(x) is of the form 

p(G-r, j )x  2(" - j)- t 
V(x)= J (10) 

~ p(G, j)x 2("- J) 
i 

The quantities p(G, j) fulfil the recurrence relation [15, 16] 

p( G, j) = p( G-%, j) +p( G-r-s, j -  1) (11) 

where % is the edge between the vertices r and s. A repeated application of Eq. (11) 
gives 

p(G, j) =p(G-r, j)  + ~ p(G-r-s, j -  1) (12) 
$ 

Eq. (8) seems to be first suggested by Moffitt [13], but without proof. Moffitt has only demon- 
strated how Nm, x can be determined within the valence bond approximation. Coulson's footnote in [8] 
about an alleged proof  of  (8) seems to refer to Moffitt's paper [13]. According to [14], in a private 
communication Coulson claimed in 1963 to be able to deduce (8) using a contour integral formalism for 
bond orders. This unpublished result is likely to be lost. 
2 For the definition of  a star graph see Ref. [15J. Note that the stars with 2, 3, and 4 vertices are 
the molecular graphs of ethylene, allyl and trimethylene-methane, respectively. 
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with the summation going over all the vertices s adjacent to r. Note that there are 
just d r such vertices. 

It is easily seen that 

p(G-r-s, j -  1) <<, p(G-r, j -  1) (13) 

since G-r-s is a subgraph of  G-r. Moreover, an equality in (13) is obtained only if 
the vertex s is of degree one. Substitution of  (13) back into (12) gives 

p(G, j )  <~p(G-r, j )  + d r p(G-r, j -  1) (14) 

From (14) one can further conclude that 

p( G, j )x 2(" - J) <, ~ p( G-r, j ) x  2("- j) + 4 ~ p( G-r, j -  1)x 2(n-j) 
J 3 J 

= (x + d~/x) ~ p(G-r, j ) x  2("- j)- ~ 
J 

Combination of this latter relation with Eq. (10) gives the inequality (9). 

An equality in (14), and therefore also in (9), exists only if all the vertices s adjacent 
to r have degree one. This, on the other hand, is possible if, and only if G is a star 
and r is its central vertex. 

Theorem 2 

Let d r be the number of  carbon atoms adjacent to the carbon atom r of an acyclic 
polyene. Then d r determines an upper bound for N r and L r and a lower bound for 
z~r as follows. 

Nr ~<,,/~ (15a) 

Lr ~<2x/~ (15b) 

=,~ ~> (2 , , /~) -  * (15c) 

Proof is based on a combination of the inequality (9) with Eqs. (2-4) and is com- 
pletely analogous to that of  Theorem 1. 

Corollary 2.1. The equality in the relations (15) holds only for ethylene (d r = 1) and 
the central atoms in allyl (d r = 2) and trimethylenemethane (d r = 3). 

Corollary 2.2. In acyclic polyenes Nmax=x/d~. Moreover, there exist also a 
maximal possible localization energy Lma x = 2,,fd~ and a minimal possible atom 
self-polarizability 7~mi n = (2v/-dr) - * 

It is likely that the inequalities (15) hold generally. A careful analysis of  the proof  
to Theorem 2 shows, however, that its present form can not be extended to all 
bipartite graphs. Similarly, the proof  of Theorem 1 is essentially based on the 
pairing theorem and it is not simple to extend it to non-alternant hydrocarbons. 
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